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Most variables of clinical interest show predictable changes with different frequencies,
mainly, but not exclusively, along the rest–activity cycle (circadian variation). Methods
of linear least-squares estimation have been designed for the detection of periodic
components in sparse and noisy time series (as they are usually present in clinical
situations). They include the single and population-mean cosinor methods. In cases
where more than one period is statistically significant over the span of time investigated,
or when the waveform is non-sinusoidal, the use of multiple components analysis to fit a
model consisting of several cosine functions (harmonics or not from a given fundamental
period) is recommended. We describe these methods, from the characterization of the
underlying models to the process of parameter estimation. As an application example, we
describe the modelling of the circadian variation of blood pressure (BP). In most
individuals, BP presents a morning increase, a small postprandial valley and a deeper
descent during nocturnal rest. This pattern can be easily modelled by means of a model
with periods of 24 and 12 hours. Individuals that differ from this model might be
considered to present increased cardiovascular risk.

Keywords: ambulatory monitoring; blood pressure; circadian variation; cosinor;
dipper; hypertension
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1. Introduction

In the clinical world, it is not strange to disregard information relative to time of
sampling. Nevertheless, it has been clearly demonstrated that the temporal
structure of biological variables usually provides very valuable information. In
multiple occasions, this temporal structure repeats itself periodically, leading us
to the concept of biological rhythm. Chronobiology studies the temporal
structure of biological variables.

In clinical practice, we may distinguish between two kinds of data: individual
data and hybrid data. A time series of values sampled from the same individual is
called the individual data. If the same biological variable is time sampled in a set
of individuals, pertaining to the same population, we talk about the hybrid data
(a set of individual data). Commonly, biological time series are sparse and noisy.
Rhythmometric procedures have been developed for detection of periods and
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modelling variability of biological time series. The single cosinor method
(Halberg 1969) is appropriate for modelling the individual data when only one
frequency is present. If more than one period can be shown to be statistically
significant or when the waveform is not sinusoidal in shape, the use of multiple
components analysis is recommended (Bingham et al. 1982). This method is an
extension of the Fourier harmonic analysis (Bloomfield 1976). Fourier analysis is
performed in the frequency domain, while rhythmometric analysis is performed
in the time domain. Moreover, Fourier analysis was designed for the balanced
case (Bingham et al. 1982), a limited situation in which the data are equidistant
and the time-series length is a multiple of the fundamental period. In addition,
Fourier analysis does not provide statistical testing and confidence intervals for
the parameters.

The single cosinor and multiple components methods have been extended for
analysis of the hybrid data. These methods are the population-mean cosinor
(Nelson et al. 1979), when only one period is fitted to the data, and the
population multiple components analysis (Fernández & Hermida 1998), which
allows the fit of several significant periodicities to the data. Therefore, the
population-mean cosinor method is, again, just a particular case of the population
multiple components analysis. When the shape of the rhythm is best
approximated by a complex model composed of two or more cosine curves
that are harmonics of one fundamental period, the obtained model is also
periodic. The main advantage of these rhythmometric procedures is that it
is possible, with a relatively small number of parameters, to represent and
explain the temporal variation of the data. The process of estimation of
parameters is markedly different between the individual and the hybrid case. In
the analysis of the individual data, the estimation of parameters and their
confidence intervals, as well as the validation or diagnosis of the model, are based
on the linear regression theory. The rhythm characteristics obtained by
individual multiple components analysis are considered as imputations or first-
order statistics for the hybrid procedures. The population multiple components
method constitutes a second-order statistic, applied to the whole population. The
population parameter estimates are based on the means of the individual
estimated parameters.
2. Mathematical models

(a ) Individual models

The approach is based on regression techniques and, as such, it is applicable to
the analysis of unequidistant observations. One of the most popular methods is
the single cosinor procedure. This method is applicable to the individual
biological time series anticipated to be rhythmic with a given period. This
procedure amounts to fitting a cosine function of a fixed anticipated period to the
data by least squares. Thus, one obtains, for the period considered, an estimate of
(i) the rhythm-adjusted mean or midline estimating statistic of rhythm
(MESOR), defined as the average value of the rhythmic function (e.g. cosine
curve) fitted to the data, (ii) amplitude, defined as half the extent of rhythmic
change in a cycle approximated by the fitted cosine curve (difference between the
maximum and the MESOR), and (iii) acrophase, lag from a defined reference
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time point (e.g. local midnight when the fitted period is 24 hours) of the crest
time in the cosine curve fitted to the data. The goodness of fit is indicated by
minimizing the sum of squares of the residuals from the analysis, i.e. the
differences between the actual measurements and the estimated functional form
or best-fitting curve. The single cosinor method is applicable only within very
restrictive conditions (Bingham et al. 1982; De Prins & Waldura 1993): the
approach requires that the data obtained be reasonably well represented by a
cosine curve, and thus non-sinusoidality of the time series limits the applicability
of the method. For a meaningful rhythmometric analysis by cosinor, it is
important, therefore, to determine the approximate sinusoidality of the data.
This requires at least the inspection of a graph of the data plotted against time
(chronogram) and the assessment of sinusoidality by means of a statistical test.

In cases where more than one period is statistically significant over the span of
time investigated or when the waveform is non-sinusoidal, the use of multiple
components analysis to fit a model consisting of several cosine functions (whether
or not harmonics of a fundamental period) is recommended (Bingham et al.
1982). Different names have been given in the literature to this method of fitting
multiple components to individual time series, including periodic regression
(Batschelet 1981), sinusoidal regression (Quinn 1989), cosine analysis of
harmonic and overlapping rhythms (Mattes et al. 1991) and partial Fourier
series (De Prins & Hecquet 1992). When we use a model composed of two or
more cosine curves that are harmonics of the fundamental period, the method of
multiple components provides three additional summary parameters (Bingham
et al. 1982): the overall amplitude (defined as half the difference between the
maximum and the minimum of the best-fitted curve in one fundamental period),
orthophase (defined as the lag from a defined reference of the crest time within
the fundamental period in the curve of multiple components fitted to the data)
and bathyphase (defined as the lag from a defined reference of the time of the
lowest value within a fundamental period in the curve of multiple components
fitted to the data). Figure 1 illustrates these concepts. In cases when only one
periodic component is fitted, it is obvious that the acrophase of this component
corresponds to the orthophase and the amplitude of this component corresponds
to the overall amplitude.

The multiple components procedure for analysis of individuals consists
of fitting to the data, by least squares, a function with several (C ) fixed
anticipated periods,

yn ZM C
XC
cZ1

Ac cosðuctn CfcÞCen; n Z 1; . ;N ; ð2:1Þ

where yn is the observed value at time tn (not necessarily equidistant) of the
studied variable; C is the number of sinusoidal components; uc are the angular
frequencies, i.e. ucZ2p/tc, where tc, with cZ1, . ,C, are the fitted periods; and
N is the number of observed values (sample size). The remaining unknown
quantities are obtained by estimation, and they are the MESOR (M in the
equation), amplitude and acrophase (Ac and fc, respectively) of each fitted
components plus en, the residual from the analysis for the value yn. Assuming
NO2CC1 and that the residuals are independent, with zero mean and common
variance, the linear least-squares resolution of this equation provides, for each
fitted period, point and interval estimates of the amplitude and acrophase as well
Phil. Trans. R. Soc. A (2009)
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Figure 1. Main parameters in multiple components model.
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as MESOR (Bingham et al. 1982). If CZ1 (only one period), the model simplifies
to the single cosinor model. Given each of the C periods, the model is fitted in its
equivalent linear form after substituting Ac and fc by their Cartesian projections
bcZAc cos fc and gcZKAc sin fc,

yn ZM C
XC
cZ1

½bc cosðuctnÞCgc sinðuctnÞ�Cen; n Z 1; . ;N : ð2:2Þ

If all C frequencies in equation (2.2) are harmonics of a fundamental frequency,
i.e. if all fitted angular frequencies uj are integer multiples of uF, then the fitted
curve is periodic with period tFZ2p/uF, where tF is the fundamental period. In
such a case, it is easy, by heuristic search, to find the maximum and the
minimum of the adjusted model. From these two values one can obtain three
additional parameters not directly estimated from equation (2.2): the overall
amplitude (Ag), orthophase (fO) and bathyphase (fB), as previously defined.

In order to estimate the parameters by least squares, the minimization of the
residual sum of squares (RSS) is used as a criterion. This is defined as

RSSðM ; b1;g1; . ; bC ;gCÞZ
XN
nZ1

e2n: ð2:3Þ

The solution of thisminimization process is given by the parameter vector estimation,

q̂Z ðM̂ ; b̂1; ĝ1; . ; b̂C ; ĝC Þ: ð2:4Þ
The procedure for the estimation of the parameters in this multiple component
model, which also enables the calculation of confidence intervals for the
estimated parameters, was described previously (Bingham et al. 1982). The
Phil. Trans. R. Soc. A (2009)
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estimations for the amplitude and acrophase of each component can be obtained
by transforming the Cartesian coordinates b̂ and ĝ given by equation (2.4) to
polar coordinates,

Âc Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̂
2
c C ĝ2

c

q
; ð2:5Þ

and

tanðf̂cÞZ
Kĝc

b̂c
;

where fc shall be chosen to be in the proper quadrant (Bingham et al. 1982). In
order to validate the statistical significance of each period in the model, a zero-
amplitude test can be done. If the null hypothesis of zero amplitude is rejected, it
can be assumed that the associated period is statistically relevant for the model. In
other cases, the associated component should be removed from the model. The zero-
amplitude hypothesis can be easily tested by means of an F-test. Note that Ac is
equal to zero if and only if bc and gc are simultaneously zero (see equation (2.5)).
The overall model statistical significance shall also be checked. The null hypothesis
is ‘all amplitudes are simultaneously zero’ against the alternative hypothesis ‘at
least one is not null’. This can be done by means of a general F-test.

The linear approach is only applicable if the C periods in equation (2.2) are
chosen a priori. The resulting estimated parameters will depend markedly on the
proper selection of periods. In those cases where the periods are unknown and
cannot be anticipated, equation (2.2) can be solved by the use of nonlinear least-
squares techniques to estimate the periods, in addition to the other unknown
parameters in the model (Alonso & Fernández 2001). As indicated above, the
proper solution of equation (2.2) by least-squares estimation requires some
assumptions. These basically relate to the appropriateness of the model,
independence of errors and homogeneity of variance. In order to make statistical
inferences, the hypothesis of normality is also usually assumed. These hypotheses
can be tested, as it is usual in regression analysis, using the estimations of the
errors, the residuals. When one or more of these tests yields p values less than a
specified significance level, transformations of the data or alternative models
must be considered (Bingham et al. 1982).

In many practical situations, it could be of interest to know if two or more
individuals show similar rhythm parameters. For instance, when investigating
the effect of an antihypertensive drug, it would be desirable to know if the
treatment implies some kind of change in MESOR or amplitude. A method has
been described for comparison of parameters from individual rhythmometric
models with multiple components (Fernández et al. 2003). In the same paper,
a non-parametric method is described for computation of confidence intervals for
parameters that are not directly estimated in the model, i.e. global amplitude,
bathyphase and orthophase.
(b ) Population models

In many cases, it is of interest to study the rhythmic behaviour of a whole
group or population. In this case, our sample is a set of I time series, each
corresponding to different individuals pertaining to the same population. The
same model is then adjusted to the I individuals, so I vectors of the parameters
Phil. Trans. R. Soc. A (2009)



J. R. Fernández et al.436
are obtained, one from each individual, according to equation (2.4),

q̂1;q̂2; . ;q̂I : ð2:6Þ
The method of population multiple components assumes that the vectors of
individual parameters are a random sample from a multivariate normal
population. The mean and the covariance matrix of this random variable thus
can be estimated using the individual parameters (Fernández & Hermida 1998).
The average of all of them gives us the estimated population parameters,

q̂pop Z ðM̂pop; b̂1pop ; ĝ1pop ; . ; b̂Cpop
; ĝCpop

ÞZ
PI

iZ1 q̂i

I
: ð2:7Þ

That is, the estimation of population MESOR is the average of all the individual
MESORs and so on with the remaining parameters. The population estimates for
the amplitude and acrophase of each component can be obtained by transforming
the Cartesian coordinates b̂ and ĝ given by equation (2.7) to polar coordinates (see
equation (2.5)). If the number of individuals I is greater than twice the number of
componentsC, i.e. if IO2C, the assumed normality enables us to perform tests such
as the null population amplitude one, and to compute confidence intervals for all
the parameters, except the special parameters of global amplitude, orthophase and
bathyphase. When CZ1, i.e. there is only one period, the method is called
population-mean cosinor. As in the case of individuals, it could be of interest to
compare rhythmometric parameters from two or more populations. A method has
been described for comparison of parameters from rhythmometric models with
multiple components on the hybrid data (Fernández et al. 2004). In the same paper,
a non-parametric method is described for the computation of confidence intervals
for population parameters that are not directly estimated in the model, i.e. global
amplitude, bathyphase and orthophase.
(c ) Practical considerations

Time is a relative variable; implicitly we are always using a reference (for
instance, midnight or 1 January). Working with individual series, we obtain
some parameters that are related to time. Obviously, if we change the reference
time, the orthophases, bathyphases and acrophases change. So, rhythmometric
models should always show the reference time used. That is not specially
important in individual analysis, but it is crucial in population analysis. All the
individuals should use the same reference time. Traditionally, analysts used clock
hours, but this reference time is not always appropriate. For instance, in the
analysis of blood pressure (BP), individual times should be referenced to the
rest–activity cycle. That is, the reference time should be the individual wake-up
hour instead of 07.00 h. The process of expressing individual times as a function
of an appropriate reference time is called synchronization. In individual analysis,
the estimations of phases (acrophases, bathyphases and orthophases) should be
interpreted according to the reference time used. Moreover, if the data are not
properly synchronized, one can easily change the estimated values to adapt them
to the desired reference. However, in the analysis of the hybrid data, bad
synchronization can lead to obtaining erroneous estimates of population
amplitudes, because amplitudes are calculated jointly with acrophases from
their Cartesian coordinates (b and g). Figure 2 illustrates the situation.
Phil. Trans. R. Soc. A (2009)
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Figure 2. Effect of synchronization on the population model. Simulated data are used for adjusting
individual and population models with a fundamental period of 24 hours and its harmonic of
12 hours. (a) Data synchronized when 24 hour population component is statistically significant and
visually obvious. (b) Data not synchronized when the 24 hour component is not statistically
significant, and visually we can only appreciate the 12 hour component. The same individual data
are used in both subplots, only individual time references are changed. Solid black lines, individual
curves; dashed black lines, population.
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The use of linear least-squares methods with only one component (single and
population-mean cosinor) should then be much more restricted than in general real
practice, where misuse is common (De Prins & Waldura 1993). The sampling
scheme could, however, limit the possible methods to be used. Too many clinical
trials are designed to obtain not more than five or six data points for the variable of
interest, sampled over the time span covering the fundamental period investigated
(say 24 hours). Since the application of equation (2.1) needs an individual sample
size NO2CC1, the described sampling rate would allow to fit a multiple model
with not more than two components. In these cases, or when, for instance, the
resting and activity spans (or light–dark schedules) have different duration, one
needs to realize that modelling the data with a unique cosine curve (and thus
assuming a symmetric function around the MESOR) could only serve as a first
approximation. The results should then be provided for descriptive or comparative
purposes without further inference. The minimal mathematical requirements, with
respect to sample size needed to fit a model with C components, are the ones
specified above (IO2C and NiO2CC1ci ). Nevertheless, if the user wants reliable
statistics, it is advisable to take higher values for I and Ni, ci.

As described above, when the waveform is non-sinusoidal, the use of multiple
components analysis to fit a model consisting of several cosine functions is
recommended (Bingham et al. 1982). When analysing individual time series, the
problem of selecting those anticipated relevant periods is not trivial (De Prins &
Hecquet 1992). It is not simple to select how many and which components should
be used. In the individual analysis, one could use a procedure somehow similar to
stepwise regression, taking into account that each periodic component added or
deleted from the model is confirmed by two predictors (the associated amplitude
and acrophase or their equivalent Cartesian coordinates). In the analysis of the
hybrid data, the problem becomes more complicated. Apart from the restrictions
concerning sample sizes given above, some other considerations must be taken
into account when using the methodology described here. First, the population
multiple components procedure assumes that all individual time series in the
sample are well modelled by the same multiple components model, which
Phil. Trans. R. Soc. A (2009)
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therefore, should include the same anticipated periods. Second, the population
multiple components procedure described here only takes into account the
among-individuals variability, assuming that this variance is considerably
greater than the within-individuals variability. Precautions should be taken
before using the proposed method when that assumption cannot be met.
3. BP measurement

Hypertension is a common chronic condition affecting up to 35 per cent of human
adults (Chobanian et al. 2003; Mancia et al. 2007). This condition is an important
risk factor for stroke, heart attack and other vascular and renal diseases
(Chobanian et al. 2003; Mancia et al. 2007). Pharmacological treatment of high
BP reduces the incidence of these complications and prolongs life (Chobanian et al.
2003; Mancia et al. 2007). Accordingly, there has been a strong incentive, from the
point of view of primary prevention, to identify individuals who have high BP and
to provide them with appropriate treatment. BP determined casually in the
physician’s office has been commonly used for the diagnosis of hypertension and for
the evaluation of treatment efficacy (Chobanian et al. 2003; Mancia et al. 2007).
These conventional time-unspecified single measurements, however, are only
indicative of the BP status of only a brief and minimal fraction of the entire
circadian (24 hour) BP pattern. The development of automatic instrumentation for
non-invasive ambulatory BP monitoring (ABPM) has provided a method for BP
assessment that compensates for most of the limitations of office measurements
(Staessen et al. 1999a). In hypertensive patients, the correlation between the BP
level and the target organ damage, cardiovascular risk and long-term prognosis is
closer for ABPM than for clinical measurements (Verdecchia et al. 1994; Staessen
et al. 1999b; Verdecchia 2000; Clement et al. 2003). A major disadvantage of relying
on clinical BP measurements for diagnosing hypertension and evaluating treatment
efficacy, and simultaneously the most important advantage of relying on ABPM,
comes from the high-amplitude circadian pattern that characterizes BP. BP is
affected by a variety of external factors, including ambient temperature/humidity,
physical activity, emotional state (anxiety and anger), alcohol or caffeine
consumption, meal composition and sleep/wake routine (Portaluppi & Smolensky
2001; Hermida et al. 2002). In addition, BP is also influenced by internal factors,
such as ethnicity, gender, autonomic nervous system tone, vasoactive hormones
and haematological and renal variables (Lemmer 1992; Sica & Wilson 2001).

The predictable changes during the 24 hours in environmental and biological
variables give rise to the circadian pattern in BP and heart rate (HR). In persons
with normal BP and uncomplicated essential hypertension, BP declines to the
lowest levels during night-time sleep, rises abruptly with morning awakening and
attains near peak or peak values during the first hours of diurnal activity. In the
so-called normal dippers, the sleep-time BP mean (Mas) is lower by 10–20% than
the daytime mean (Maw). In addition to this profound sleep-related nocturnal
decline, the typical circadian pattern of BP exhibits two daytime peaks, the first
approximately 4 and the second approximately 12 hours after awakening, with a
small afternoon nadir. Significant gender differences in specific features of the BP
and HR circadian rhythm have been identified. Typically, men exhibit a lower
HR and higher BP than women, the differences being greater for systolic BP than
Phil. Trans. R. Soc. A (2009)
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Figure 3. Circadian variation of systolic BP in men (M, grey curves) and women (F, black curves).
Each graph shows the means and standard errors from the data at 2 hour intervals. These means
are compared between groups by means of a t-test (asterisks indicate p!0.05). The curve
represented for each group corresponds to the best-fitting waveform model determined by
population multiple-component analysis. The arrow descending from the upper horizontal time
axis points to the circadian orthophase (rhythm’s crest time). Black boxes in time axis indicate
sleep hours.
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for diastolic BP (Hermida et al. 2002). This pattern can be easily described by
means of a population rhythmometric model with periodic components of 24 and
12 hours. With only five parameters, one obtains a model for the normal
behaviour for the circadian rhythm of BP (figure 3, table 1). The extent of the
sleep-time decline in BP has been mainly quantified through the so-called awake–
asleep BP ratio (RBP), defined as the night-time decline in BP relative to Maw,
and calculated as

RBP Z 100 � MawKMas

Maw

: ð3:1Þ
Phil. Trans. R. Soc. A (2009)



Table 1. Parameters from rhythmometric model for females and males (phases expressed in
degrees, p-value from test for comparison of parameters)

MESOR A24 hours f24 hours A12 hours f12 hours Ag fO fB

female 123.19 8.80 K118 5.73 K49 11.18 K183 K295
male 130.04 9.95 K114 5.53 K60 12.08 K55 K298
p-value !0.001 0.204 0.330 0.644 0.062 0.394 0.430 0.396
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Using this ratio, patients have been arbitrarily classified as dippers or non-
dippers (RBP!10%) (O’Brien et al. 1988). More recently, this classification has
been somehow extended by dividing the patients into four possible groups: extreme
dippers (RBPR20%), dippers (RBPR10%), non-dippers (RBP!10%) and inverse
dippers or risers (RBP!0%, indicating asleep BP above the awake mean).
4. Medical consequences of BP non-dipper status

The extent of the nocturnal BP decline in hypertension seems to be of clinical
importance in itself as a criterion of cardiovascular and other risks. Evidence is
now available that night-time BP is the most potent predictor of outcome when
compared to 24 hour and daytime values (Staessen et al. 1999b; Dolan et al. 2005;
Kikuya et al. 2005). The reduction of the normal 10–20% sleep-time BP decline
characteristic of the non-dipper pattern is associated with elevated risk of end-
organ injury, particularly to the heart (left ventricular hypertrophy, congestive
heart failure and myocardial infarct), brain (stoke) and kidney (albuminuria and
progression to end-stage renal failure) (O’Brien et al. 1988; Verdecchia et al.
1994; Staessen et al. 1999b; Kario et al. 2001; Ohkubo et al. 2002; Ingelsson et al.
2006). Prospective studies have already demonstrated that the elevated risk of
end-organ injury in non-dippers leads to the increased incidence of morbid and
mortal cardiovascular events. O’Brien et al. (1988) reported that non-dipper
hypertensive subjects are significantly more likely to suffer from a stroke than
dipper subjects. Verdecchia et al. (1994) also showed that, after an average
follow-up period of 3.2 years, non-dipper hypertensive patients experienced
approximately three times as many adverse cardiovascular events as dipper
patients. More recently, Staessen et al. (1999b) reported that non-dippers
experienced a greater incidence of stroke and myocardial infarction than the
group of persons who had a normal dipper pattern. Moreover, Ingelsson et al.
(2006) demonstrated that a non-dipper BP pattern and increased night-time
diastolic BP is a predictor of incident congestive heart failure in elderly men.
Kario et al. (2001) reported that, after 4 years of follow-up, hypertensive patients
with a sleep-time riser BP profile had a significant increased incidence of fatal
and non-fatal stroke when compared with all other groups of patients divided
according to the dipping status. A recent survival analysis from the Ohasama
study found, after an average follow-up of 9.2 years, that a 5 per cent decrease in
the decline of sleep-time systolic BP in hypertensive patients was associated with
a 31 per cent increase in the risk of cardiovascular mortality (Ohkubo et al.
2002). Even more relevant is the finding that dipper hypertensives had a relative
hazard of cardiovascular mortality similar to that of non-dipper normotensives
Phil. Trans. R. Soc. A (2009)
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(Ohkubo et al. 2002). These results indicate that non-dipping in BP is a risk
factor of cardiovascular mortality, which is independent of the 24 hour mean BP
value, i.e. the presence or absence of an elevated BP above the threshold used for
the diagnosis of hypertension. These findings also suggest that cardiovascular
risk could be influenced not only by the BP elevation, but also by the amplitude
of the circadian BP rhythm. Accordingly, there is growing interest in how to
tailor the treatment of hypertensive patients according to their circadian BP
pattern (Hermida et al. 2007a).
5. Example of application

We studied 196 diurnally active and nocturnally resting Spanish adults, 117 men
and 79 women, with a mean age of 50.69G1.21 years. The systolic, mean arterial
and diastolic BP and HR of each person were automatically monitored every
20 min from 07.00 to 23.00 and every 30 min from 23.00 to 07.00 for 48
consecutive hours with a validated device. During monitoring, each subject
maintained a diary listing the time of going to bed at night and awakening.
Following the information from the diaries, each individual’s clock hours were
first re-referenced from clock time to hours after awakening. This transformation
avoided the introduction of bias due to differences among subjects in their
sleep/activity routine. Based on the calculated diurnal and nocturnal means,
135 subjects were classified as dippers whereas 61 subjects were classified as
non-dippers. The data were analysed using population multiple components
methods, with a fundamental period of 24 hours and its harmonic of 12 hours,
as was recommended previously (Hermida et al. 2002). Figures 3 and 4 show
the best-fitted model for men and women, and for dipper and non-dipper
populations. Tables 1 and 2 show the numerical values for the estimated
parameters. A non-parametric comparison of parameters from two populations is
also shown.
6. Discussion

The use of rhythmometric models allows us to understand the temporal
behaviour of a biological variable such as BP and to detect potential differences
between groups. Comparing the waveform of BP variability between men and
women (figure 3), one can observe that both fitted models are similar, except in
MESOR. Moreover, the p values from table 1 show that only the difference in
MESOR is statistically significant between genders, while the values of
amplitude or orthophase are not statistically different between groups. The
other example, comparing dipper and non-dipper subjects, shows a different
situation (figure 4). In this case, one cannot establish differences in MESOR
between groups, but, as expected, the amplitude is significantly lower in non-
dipper subjects by 9.36 mmHg ( p!0.001, from table 2). Differences in
bathyphase are also statistically significant, but they may not be clinically
relevant (only 78, i.e. less than half an hour, the sampling interval during the
night in this study). The inverse situation occurs with orthophases. The
difference between estimations is considerable (1238, i.e. 08.20), but it is not
statistically significant. This fact can be explained by the large confidence
Phil. Trans. R. Soc. A (2009)
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Figure 4. Circadian variation of systolic BP in dipper (D, black curves) and non-dipper (N, grey
curves) subjects. Each graph shows means and standard errors from the data at 2 hour intervals.
These means are compared between groups by means of a t-test (asterisks indicate p!0.05). The
curve represented for each group corresponds to the best-fitting waveform model determined by
population multiple components analysis. The arrow descending from the upper horizontal time
axis points to the circadian orthophase (rhythm’s crest time). Black boxes in time axis indicate
sleep hours.

Table 2. Parameters from rhythmometric model for dipper and non-dipper subjects (phases
expressed in degrees, p-value from test for comparison of parameters)

MESOR A24 hours f24 hours A12 hours f12 hours Ag fO fB

dipper 126.41 12.30 K117 6.77 K62 14.74 K57 K300
non-dipper 129.20 3.31 K104 3.51 K27 5.38 K180 K283
p-value 0.174 !0.001 0.180 !0.001 0.002 !0.001 0.926 !0.001
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interval obtained for this parameter in the non-dipper group (K198 and K1858).
The reduced circadian amplitude in non-dippers leads to oscillations in
orthophases between the two relative maximums of the adjusted model, so its
estimation presents great variability. According to these results, from the
population point of view, it does not seem possible to distinguish dippers from
Phil. Trans. R. Soc. A (2009)
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non-dippers on the basis of just the 24 hour mean BP values. In order to predict
outcomes, some authors defend the use of chronobiological modelling against the
day–night ratio (Cornelissen et al. 2007). Although both techniques do not
exclude each other, most of the international studies (Verdecchia et al. 1994;
Staessen et al. 1999b; Ohkubo et al. 2002; Dolan et al. 2005) have shown the
power of the nocturnal mean of BP and the day–night ratio to predict
cardiovascular morbidity and mortality.

Therapeutic intervention in hypertension consists of adequate control of BP,
the goal being to reduce cardiovascular morbidity and mortality. Owing to the
increased cardiovascular risk in non-dipper subjects when compared with
dippers, one might thus conclude that treatment of non-dippers should require
increasing the circadian amplitude of BP that would result from decreasing the
nocturnal BP mean to a larger extent than the diurnal BP mean. Previous
findings indicate that this therapeutic goal requires contemplating chronother-
apy (timing of the antihypertensive medication) as a proper strategy to remodel
the circadian pattern of BP (Hermida et al. 2007a, 2008).

However, the potential reduction in cardiovascular mortality associated with the
normalization of the circadian variability of BP (i.e. conversion from non-dipper to
dipper pattern) has not yet been fully established. Recent findings from the
Monitorización Ambulatoria de Presión arterial y Eventos Cardiovasculares study
(MAPEC; Hermida 2007), designed to investigate whether normalizing the
circadian BP profile towards a more dipper pattern by the use of chronotherapy
reduces cardiovascular risk, indicate that the probability of event-free survival is
strongly correlated with the awake–asleep BP ratio. Most importantly, results after
just 3 years of follow-up suggested that increasing this ratio towards a more dipper
pattern decreases cardiovascular risk, while decreasing the awake–asleep BP ratio
is associated with increased morbidity and mortality (Hermida et al. 2007b).
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