
Complementary methodology in the analysis of rhythmic
data, using examples from a complex situation, the
rhythmicity of temperature in night shift workers

L. GOUTHIERE1, B. MAUVIEUX2, D. DAVENNE2 & J. WATERHOUSE3

1Laboratoire de Statistiques Appliquées et d’Informatique Biomédicale, Expert Soft Tech., Le chemin de la

Birotte, F-37320 Esvres, France, 2Centre de Recherches en Activités Physiques et Sportives (CRAPS) -
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Abstract
The methodology for analyzing a biological rhythm has already been the subject of much investigation.
However, many questions still have no answer, for example, questions such as the periods chosen: fixed
or determined. Throughout this article, we suggest a somewhat innovative methodology that makes it
possible to define the steps that seem essential to us in the scientific analysis of rhythms. For some time,
this methodology has been put into practice in our laboratory in various studies, some of which have
given rise to publications. The notion of quality is a new notion that is present in industry and, when
applied to sampling, can improve experimentation. In this way, one may judge the degree to which data
samples can be explored as well as the degree of validity of the results of exploration. We provide several
methods for achieving this. The search for periods is also important. For this, we have various methods
but we must be able to determine those that are the most appropriate and reliable in a particular case.
We propose spectral methods, two of which are new and complement ‘Cosinor’ methodology. On the
other hand, modelling uses various methods such as those from, for example, periodic trigonometric
functions or more complex chaos functions. We are interested in models from the field of regression (the
cosine model) and complementary statistical tests that make it possible to validate the proposed model.
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Introduction

In the field of statistical analysis of biological rhythms, the work of the Belgian school (de

Prins et al., 1986) and the American school (Bingham et al., 1982), have formed the basis of a

rigorous analysis; however, there is a great diversity in the methods used, and certain

problems have not been fully solved. In particular:

(1) Absence of a common methodology in the scientific publications. The results can only

be compared with difficulty.
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(2) The choice of periodic model. The sinusoidal model (cosine function) has been adopted

because of its simplicity and because it still seems to be appropriate (de Prins &

Waldura, 1993). However, there are several variants, depending on whether the model is

mono-rhythmic, or has an amplitude or phase that is a complex function of time.

The search for period is still problematic and until now few spectral methods seem to be

completely satisfactory.

In this overview, all the examples presented come from various studies that have been

performed in our laboratory. These studies were:

(1) A study of the rhythmicity of oral temperature (T8) in eight night shift workers. The

temperatures were read manually (Dt=30 – 60 minutes, except for sleep periods) over

five consecutive days (from Sunday to Friday) including night work (from 10:30 p.m. to

05:30 a.m.). The experimental data are not equispaced and their study remains

complex. In the case of night work, one can expect to observe various periodicities in

addition to one of 24 hours (Reinberg et al., 1988), a progressive reduction in amplitude

over the course of the week (Motohashi et al., 1987), and phase shifts over the course of

the week, particularly during the transition between the weekend recovery periods and

resumption of the night shift (Barnes et al., 1998).

(2) Using an actimeter (with a sampling frequency of 1 minute), the study of the rhythm of

activity can be recorded in subjects on night work. These data are equispaced.

(3) Finally, we also use data from other samples of standard functions (i.e. function of

known period) that will confirm the reliability of each method. (The theoretical period

must be found with this previous methods to improve the reliability.)

An important point in our methodological complement is standardization. This makes it

possible to adopt a common language. The methodology that we present here is an alternative

to classical Bayesian statistical analysis: Exploratory Data Analysis. (The references give some

examples of package software that is available.) EDA is a method standardized by the US

National Institute of Standards and Technology.

The main reasons we have selected methods from EDA are as follows: EDA (1) does not

impose a specific type of modelling, (2) data analysis precedes modelling, (3) the methods of

analysis are mainly graphical and therefore much more easily understood by a chronobiologist

without mathematical training. High-performance complementary numerical statistical tests

(for example the Kolmogorov – Smirnov test and the Ljung –Box test) complement the

graphic studies and make it possible to test the hypotheses.

The graphs that we present come from EDA (Tukey et al., 1977; Mauvieux et al., 2003);

they can be useful for comparing results.

Our approach relies on the three essential stages adopted by EDA. Because EDA is not a

method that has been used in chronobiology, most of the graphics we present here come from

the EDA graphical methods. This overview is divided into three sections: quality of data;

search for periodicity; the model and statistical validation of the model.

Quality of data

The first stage that we propose in the analysis of data relies on quality, which is a notion that

comes from industry (for example, the ISO from AFNOR quality norms, ‘Normes de qualité

ISO 9000’, explained in the references) This idea was defined to improve productivity. It is

already present in scientific research in other forms (for example, the quality procedure in the
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‘Institut National de Recherches Agronomiques’ (INRA) France, 2002). We have sought to

introduce this notion to sampling in the context of chronobiology data analysis.

The study of experimental data quality concerns criteria which judge whether the sample of

experimental data is significantly exploitable. This evaluation has the advantage of being

visual and for this, we have various graphic tools such as:

(1) The lag plot (Box et al., 1994). A lag plot checks whether a data set or time series is

random or not. Random data should not exhibit any identifiable structure in the lag plot.

Non-random structure in the lag plot indicates that the underlying data are not random.

(2) The autocorrelation diagram (Box et al., 1994). Autocorrelation plots are a commonly

used tool for checking randomness in a data set. This randomness is ascertained by

computing autocorrelations for data values at varying time lags. If the data are random,

such autocorrelations should be near zero for all time-lag separations. If non-random,

then one or more of the autocorrelations will be significantly different from zero. In

addition, autocorrelation plots are used in the model identification stage for Box –

Jenkins autoregressive, moving average time series models.

(3) The graph of normal probability (Chambers et al., 1983). The normal probability plot is

a graphical technique for assessing whether or not a data set is approximately normally

distributed. The data are plotted against a theoretical normal distribution in such a way

that the points should form an approximate straight line. Departures from this straight

line indicate departures from normality. The normal probability plot is a special case of

the probability plot.

The conditions necessary for high quality of data are now illustrated by our own data using

these methods.

Absence of a random distribution of data

The absence of a random distribution of data translates into the existence of a coherent

physical or biological phenomenon that may be represented by a model. The autocorrelation

diagram brings out whether or not the data have a random character (Figures 1 and 2). In the

Figure 1. Autocorrelation curve: absence of a random character. Note the sinusoidal aspect of the curve. The absence

of randomness in the data indicates the existence of a physical or causal stochastic phenomenon. The horizontal

dashed lines closer to the y=0 line are calculated to show the limits of randomness. (Study of the temperature in

subjects during night shift work.)
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absence of randomness, we can presume that the data are the expression of a stochastic

process indicating the presence of a real biological or physical phenomenon (Box et al., 1994,

EDA Autocorrelation)

Independence of data is desirable

This is because, if the experimental data are ‘dependent’ (dependent data mean highly

correlated data), there is the possibility of the existence of extra mathematical relationships

within the data, with the subsequent risk of false results when modelling (in particular by

regression) and performing statistical tests. To test this characteristic by using the EDA

graphic methods, we can use the Lag plot (Figures 3 and 4) complemented by a Q Ljung –

Box test (Ljung & Box, 1978). However some authors maintain that data coming from

Figure 2. Autocorrelation curve: the random character is marked when the curve approaches zero. This result

indicates the absence of some underlying physical or causal stochastic phenomenon.

Figure 3. Lag plot and Q test: highly dependent data. The dependence of data indicates the existence of a complex

mathematical relation that connects one piece of data to the next (p=0.95, a=0.05). (Study of temperature in

subjects performing night work.)
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temporal series are often highly correlated i.e. dependent (Box et al., 1994); this complicates a

reliable interpretation of the results.

Absence of a stationary character

If the data are not stationary, assessment of rhythmicity is very complex. Adapted spectral

analyses such as that of Blochner (Box et al., 1994) completed by autocorrelation and PACF

(Partial Autocorrelation Function) calculations (Box et al., 1994) are the tools that are the

most appropriate for studying this phenomenon (for example, we will refer to the work of Box

et al., 1994).

Figure 4. Lag plot and Q test: independent data. The non-dependence of data indicates that there is no complex

mathematical relation that connects one piece of data to the next. In this case, the models that will be calculated, for

example, by regression, will all be more exact (p=0.95, a=0.05) (random standard measure function).

Figure 5. Normality graph. Distribution of data according to a ‘Normal’ distribution with a K–S test (H(0): accepted)

here makes it possible to state that the experimental data on temperature follow a normal distribution (p=0.95,

a=0.05) (study of temperature in subjects during night work).
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Normal distribution of data

We use the normal probability graph, complemented by the Kolmogorov – Smirnov test (K –

S test) that confirms or weakens the hypothesis that the distribution is normal (H(0): normal

distribution) (see Figures 5 and 6). Studies of biological phenomena often show such

normality, even though such normality is not systematically found in theoretical data resulting

from pure mathematical functions. On the other hand, many statistical tests and analyses (for

example, the Fisher periodogram) require this hypothesis to be upheld.

Conclusion relating to the quality of data

The conditions presented above presume that sampling is likely to be exploitable in the

context of the study and modelling of rhythmic phenomena. These conditions provide criteria

of measurement of the quality of this sampling. If most of the previous conditions are met,

then the investigation of the data will arrive at valid results characteristic of the phenomenon

under study. If these criteria are not met, then it becomes necessary to improve the sampling

regimen.

Search for periodicity

The search for periodicity will depend on whether the data in the sample are equispaced or

non-equispaced. This directly influences the choice of the spectral method used. We will

therefore distinguish the specific methods that apply to data that are equispaced or non-

equispaced, and methods that apply to both formats of experimental data.

Data that are non-equispaced

If the data are not equispaced, only three methods may be envisaged. We recommend the

following methods as providing the greatest reliability for determination of the period

Figure 6. Normality graph. Distribution of data according to a non-‘Normal’ distribution with a K–S test (H(0)

::rejected); the absence of ‘Normality’ in the data will limit the statistical tests that can be performed legitimately,

since, for many of them, this condition is necessary (p=0.95, a=0.05) (standard measure cosine function with a

period of 15).
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The Percent Rhythm spectrum (PRS). The Percent Rhythm Spectrum is calculated from the

null amplitude test (Bingham et al., 1982; Mauvieux et al., 2003) (Figures 7 and 8).

Reverse Elliptic spectrum (RES). The Reverse Elliptic Spectrum (RES) is calculated from the

surface of a confidence ellipse. Results obtained using this method have been published

(Deschatrette et al., 2004; Mauvieux et al., 2003). This spectrum also provides a confidence

interval for determination of period according to the Ellipse test (Bingham et al., 1982;

Mauvieux et al., 2003) (Figures 9 and 10).

These spectral analyses can also be applied to the search for the periodicities present within

a population. When applied to a population, the analysis considers all the data series that

describe a population’s behaviour. This notion is similar to that described in the definition of

the Population Mean Cosinor (Bingham et al., 1982).

Lomb and Scargle Periodogram. The Lomb and Scargle periodogram (Scargle, 1982) combines

the principles of regression analysis and Fourier transforms (Figures 11 and 12).

Figure 7. The Percent Rhythm Spectrum detects a fundamental (main period) of 23.8 hours. A harmonic (secondary

period) is also detected at around 18 hours (p=0.95, a=0.05) (study of temperature in subjects during night work).

Figure 8. The Percent Rhythm Spectrum detects a fundamental (main period) of 15 hours (p=0.95, a=0.05) (study

of a standard measure cosine function with a period of 15 hours).
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Figure 10 Normalized Reverse Elliptic Spectrum detects the main period (fundamental) of 15 (p=0.95, a=0.05)

(standard measure cosine function with a period of 15 hours).

Figure 11. The Lomb and Scargle periodogram (not normalized here) detects a fundamental period at 23.5 hours and

several harmonics of which one is at 12 hours, with a reliability close to that found by the previous methods

(actimetric study of athletic subjects working night shifts).

Figure 9. Normalized Reverse Elliptic Spectrum detects the main period (fundamental) of 23.4 hours. A harmonic

(secondary period) is also detected at around 18 hours. The confidence interval for the period is determined by the

dotted vertical straight lines (p=0.95, a=0.05) (approximately 21 – 27.5 hours for the 23.4 hour period) (study of

temperature in subjects during night work).
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Data that are equispaced in time

The spectral methods derived from Fourier analysis are only applicable if the data are

equispaced. The methods derived from regression analysis can also be applied in this case (see

previous paragraph).

We will present the highest performance methods that we have implemented in our studies

on rhythmic markers, and the interest they have. They come mostly from methods used in

astronomy (Spectral Analysis, 2002). Their drawback is their average reliability relative to the

methods that come from regression. Reliability, as we have defined it, is characterized by

repetitivity in determination of exact results when searching for periods in the samples of data

generated from periodic mathematical functions. We present the following spectral analyses.

Autospectral Spectrum according to Jenkins and Watts (Jenkins & Watts, 1968). This is a

spectrum from the Fourier transform of the autocorrelation function, with some mathematical

modifications (Figures 13 and 14)

Figure 13. The Jenkins and Watts periodogram presents a good reliability in this case and here detects a period at

24 hours (study of temperature in subjects during night work).

Figure 12. The Lomb and Scargle periodogram (normalized here) presents a main peak at 15 hours (standard

measure cosine function of a period of 15 hours).
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Figure 15. Autoperiodogram (not normalized here) according to Jenkins and Watts (1968). Two noticeable peaks at

13 and 23.2 hours are detected for the wake/sleep rhythm (actimetric study of athletic subjects during night work).

Figure 16. Autoperiodogram (normalized here) according to Jenkins and Watts (1968). A noticeable peak at 15 hours

is observed (measure of standard cosine function with a period of 15 hours).

Figure 14. Autospectral Spectrum (normalized) according to Jenkins and Watts (1968) (Kaiser windowing). An exact

estimate of period is produced (standard measure cosine function with a period of 15 hours).
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Autoperiodogram according to Jenkins and Watts (Jenkins and Watts, 1968). The principle of this

spectrum is the same as that of the previous one, but with different mathematical

modifications (Figures 15 and 16).

Fisher Periodogram (Bloomfield, 1976). The Fisher periodogram is used in chronobiology. It is

an acceptable method and can be compared with the methods already cited above. However,

according to the tests that we have carried out, it presents the same drawbacks as the Discrete

Fourier Transforms, in particular, in its reliability in determining period (Figure 17).

Table I gives a summary of the methods described above.

Period to be chosen

‘How to choose which period, using which method?’ is a question that often recurs and which

it is difficult to answer. We propose carrying out searches for periods using the various

methods that have just been described in the first part of this paper and that, in our view,

present the highest reliability when applied to our data. The choice of method is made in

terms of: the distribution of data (whether or not it is equispaced with respect to the timing of

its collection), the reliability of the method used, and, finally, the results obtained from tests of

the validity of the model for a fixed period (to be considered below).

Table I Methods and conditions on the data

Percent

Rhythm Spectrum

(PRS)

Reverse

Elliptic

Spectrum (RES)

Lomb and

Scargle

periodogram

Autospectral

according to Jenkins

and Watts

Autoperiodogram

according to Jenkins

and Watts

Fisher

periodogram

Equispaced data

Not required Not required Not required Required Required Required

Unevenly spaced data

Not required Not required Not required Not available Not available Not available

Normal distribution

Not required Not required Not required Not required Not required Required

Figure 17. The Fisher Periodogram (normalized) is a method that comes directly from the DFT (Discrete Fourier

Transforms) with a statistical test on the fundamental at 15 hours in this example (H0 accepted p=0.95, a=0.05)

(study of a standard measure cosine function with a period of 15 hours).
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The model and its statistical validation

Modelling by regression

In the context of a study of a model with only one rhythmic component, the use of the classic

cosine function calculated by regression seems to be the most appropriate method (de Prins et

Waldura, 1993) (Figures 18 and 19). However, it is necessary to check that amplitude and

phase remain constant over time. This is because biological phenomena with only one

rhythmic component do not seem to follow this type of model exactly. We often observe a

Figure 19. Confidence ellipse according to the Single Cosinor (p=0.95, a=0.05). The period is 23.4 hours. The

smaller the surface of the ellipse, the higher precision is in the determination of the period. The fact that the origin is

outside of the confidence ellipse indicates that the coefficients of the cosine curve are significantly greater than the pair

of values (0, 0) and so the existence of this model has been validated (study of temperature in subjects working night

shifts).

Figure 18. Model with a 23.4 hour period calculated by cosine regression y(t) = aCos(2pt/T +F) + M. The points

represent all the experimental temperature data for all subjects (n=8) (a: average; va: variance; sd: standard error)

(study of temperature in subjects working night shifts).
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more complex expression of phase and, slightly less often, of amplitude. The use of complex

demodulation spectra makes it possible to verify whether the classic model:

y(t) = aCos(2pt/T +F) + M; is not a complex function of time (Figures 20 and 21)

Statistical validation of the model

A model that is calculated using regression analysis must fulfil the following criteria; if it does

not, then the statistical value of the study is open to serious question (de Prins, 1986). The

criteria are:

(1) Independence of residue (Figure 22)

(2) An average residue equal to zero (Figure 23)

(3) Normality of residues (Figure 24)

(4) Homogeneity of variance of the residues (Figure 25).

Figure 21. Complex phase demodulation spectrum. Phase does not remain constant over time. The signal moves

from positive to negative at 30 hours, which indicates that, at the time of the weekend/resumption of work transition,

the phase of temperature rhythm shifts. In this case, phase can be a complex function of time and the model is

written:y(t) = aCos(2pt/T +F(t)) + M (study of temperature in subjects during night work).

Figure 20. Complex amplitude demodulation spectrum. The amplitude for a 23.4 hour period remains sufficiently

constant (signal close to 0) to allow us to affirm that it is not a complex function of time. It would seem to be the case

that the extreme points are artifacts (study of temperature in subjects during night work).
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Discussion/conclusion

The methods described here do not call the results of all previous studies into question; rather

they should be considered as providing supplementary help for improving the results

Figure 22. Lag plot with Q test (p=0.95, a=0.05) on the residues from a model with a period of 15 hours study of a

standard cosine function of period 15 hours).

Figure 23. Tests of goodness of fit on a model with a period of 15 hours. In this case, we do not observe normality in

the distribution of the residues (study of a standard cosine function of period 15 hours).
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obtained. The methods also allow greater precision in the approaches to studying rhythms in

complex situations where periods are not known (de-synchronization, temporal isolation,

etc.). They also allow re-analysis of some data, in particular in studies where the period was

defined a priori as being 24 hours in length. The methodology described here through EDA

graphics has several advantages:

(1) It first proposes a formal analysis allowing chronobiologists to adopt a common

approach.

(2) It also introduces the notion of quality of sampling. This may be used to determine the

minimum size of the sample. This has already been addressed by some authors (de Prins et

al., 1986) but its application in the context of chronobiology seemsdifficult.Wecan also try

to determine theminimum size of the sample aftermodelling, by studying the behaviour of

the residues using specific model-validating tests (studies of residues and goodness of fit).

(3) To address the problem of period determination in the light of variations obtained from

the spectral methods. The spectral methods that come from regression analysis have

shown a greater reliability than those that come from Fourier analysis. In particular, the

Figure 24. Normal probability graph and K–S test (p=0.95, a=0.05) on residues of a model with a 23.4 hour period.

The test shows normality of distribution of the residues for p=0.95, a=0.05 (study of temperature in subjects during

night work).

Figure 25. Graph of homogeneity in variance and Bartlett test of residues (p=0.95, a=0.05). The test shows good

homogeneity in variance (study of temperature in subjects during night work).
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Reverse Elliptic Spectrum is an innovative, very reliable method that makes it possible to

obtain the best period for a Cosinor calculation (Best Cosinor fit). It presents the

advantage of being able to easily visualize the spectrum (the peaks of periods are quite

detached), and of giving a confidence interval for the value of the period. We have found

these methods to be valuable for the analysis of data from several experiments

(Deschatrette et al., 2004; Mauvieux et al., 2003).

We have sought to present these methods and their use in the most accessible way possible

for the chronobiologist. The reader will find the theoretical background associated with these

methods by consulting the bibliography.
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